
輾轉相除法的連結 
國立台灣師範大學數學系  黃文達 

 

1 長方形的裁剪  
 

    利用輾轉相除法求兩個自然數 n和 m的計算過程可列之如下： 
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     上面的計算過程，幾何上代表從矩形中裁減出最大正方形的過程，第一個

式子，從一個 m×n 的矩形裁減出 m×m 的正方形共有 q0個，餘下 n×r0的小矩形，         

第二個式子，從 n×r0的矩形繼續裁剪出 r0×r0的正方形共有 q1個，餘下 r0×r1的小

矩形，最後一個式子是說從 rn-1×rn的小矩形可裁剪出 qn+1個邊長為 rn 
的小矩形而無剩餘。 

將輾轉相除法的剪裁模式，應用到一般的矩形，產生下面問題。 

 
問題：將一個長方形剪成正方形，何種長方形有限次可做完？ 
      何種長方形永遠也無法完工？ 
 

結果非常簡單，當長寬比為有理數時有限次可做完，當長寬比為無理數時永

遠也無法完工。如果把剪裁的方式稍微加以限制，每次是直的剪一次，橫的方向

再剪一次，如此橫切直割交替進行，提出下面問題 
 
問題：如果要求橫切直割交替進行，何種長方形有限次可做完？ 
      何種長方形永遠也無法完工？ 
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    由黃金矩形的定義我們發現，從黃金矩形減去一個最大正方形後，仍剩下一

個黃金矩形，這種切割可以無限制進行下去，我們想要知道，是否存在某個矩

形？，祇能做有限次這種切割。 
   我們從另外一個角度來看，先給定一個單位正方形 R0，在右方加上同樣大

的正方形 I1，得到矩形 R1，再從 R1 上方加上一個正形 I1，構成一個新矩形，按

照這種方式可以得到一序列的矩形 R1 ,R2 ,...,Rn,...，這些矩形的長與寬有何特別

的關係？ 
   令矩形 Rn 的長與寬分別為 an+1 及 an，則 
     an+2=an+1+an 且 a0=a1=1 
這種數列正是 Fibonacci 數列，利用正方形的拼舖或矩形的切割可導出有關

Fibonacci(費氏)數列的一些重要性質。 

 
2.輾轉相除表的探討 

 

  計算 m和 n的最大公因數時，使用長除法的次數，稱為輾轉相除法的步數函

數，記成 E(m,n)。顯然 E(m,n) 有下列基本性質： 

1. E(m,n)≥1，但無上界; 

2. E(m,n)=E(n,m) 

3. 若 m可整除 n，或 n可整除 m，則 E(m,n)=1； 

4. 當 m>n時 E(.,n)為週期函數。 

 

問題：對於指定的步數 k，什麼樣的自然數 m與 n可使 E(m,n)=k? 

 

費氏數列是由 1，1出發，接著是後項等於前兩項相加，如此所構成的數列。

即 

 f0=1,f1=1,f2=2,f3=3, f4=5, f5=8, f6=13, f7=21, f8=34, f9=55, f10=89,… 

因  fn+1=1×fn+fn-1 

fn=1×fn-1+fn-2  

…………….. 

f3=1×f2+f1  

f2=2×f1 

一共做了 n次運算，故 E（fn+1,fn）=n。 

    更進一步我們可以發現：在滿足 E（a,b）的所有兩自然數 a和 b中，以 fn+1 

和 fn為最小。 

 

主題:E(m,n)的上界 

 



問題： 對於任給定的兩自然數 m與 n，m>n，需要多少步數才可保 

證可做完輾轉相除法? 

 

結論： 

    對於任一兩自然數 m與 n， m>n恆有 

          1≤E(m,n)≤5×(n的位數) 

 

理由是 fn+5 比 fn 多一位數： 

        fn+5  =fn+4+fn+3 

=2fn+3+fn+2 

=3fn+2+2fn+1 

=5fn+1+3fn 

=8fn+5fn-1 

=13fn-1+8n-2 

＞10fn-1+11fn-2 

＞10fn 

 因此 fn+5 比 fn 多一位數，一般而言：fn+5k  ＞10kfn， 
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這表示 n至少有 l+1位數。 

問題： 自 1~1000 選出兩數，使得輾轉相除法所需的步數為最多？ 

 

3 矩形分割成方形的個數 

 

     將給定一個邊長為整數 m及 n之矩形，分割成邊長亦為整數之正方形，這

種分法有很多，譬如成將長 m等分及將寬 n等分，可得 mn 個單位正方形的分割，

如果考慮每次分割都要分割出最大正方形，每次裁剪都取邊長為寬長的正方形，

利用轉輾相除法的原理的分割所分割出之正方形個數，記為 F(m，n)，函數 

F(m，n)之性質主要有: 

 

1. F(m,n)=F(n,m) 

2. F(mk,nk)=F(m,n) 

3. F(1,n)=n, F(2,2n+1)=n+2, F(2,2n)=n 

4. F(na+b,a)=F(a,b)+n 

5. F(n,a)=F(n,n-a) 

6. F(n+1,n)=n+1 

7. F(m,n)≤mn。 

 



    將邊長為整數 m及 n之矩形，分割成邊長為整數之正方形，要求分割出的正

方形個數為最小，此時正方形的個數為 f(m，n)。 

 

    有關函數 f(m，n)之性質如下: 

1. f(m,n)=f(n,m) 

2. f(mk,nk)≤f(m,n) 
3.f(1,n)=n, f(2,2n+1)=n+2,f(2,2n)=n,f(n,n)=1 

4.f(a+b,n)≤f(a,n)+f(b,n) 
5.f(k,kn)=n 

 

   f(m,n)和 F(m,n)的關係，主要的性質有: 

1. f(m,n)≤F(m,n) 
2. 當 min{m,n}≤4 時，f(m,n)=F(m,n) 

3. 當 n≥5 時，f(n,n+1)<F(n,n+1) 

4. 當 n≥10 時，f(n,n+2)<F(n,n+2) 

5. 當 n≥6 時，f(n,kn±1)<F(n,kn±1)，k≥2 
6. 當 n≥12 時，f(n,kn±2)<F(n,kn±2)，k≥2 
 

問題: 試找出計算 f(m,n)之公式。 

 

問題: 試找出 F(m,n)-f(m,n)之上界函數公式。 

 
4. 完全正方形 
 
    正方形是每一個人都非常熟悉的圖形，其中卻隱藏了一個奇妙的“數學之

謎”: 
 
問題：用一些互不相等的小正方形，能夠拼出一個大正方形嗎？ 

 
    在數學上這個大正方形稱之為完全正方形，要作出一個完全正方形可不是一

件容易的事。 
1930 年蘇俄數學家魯金認為這種完全正方形不存在。 
1939 年 sprague 造出第一個完全正方形，它是由 55 個小正方形組成，邊長為 4205   
      單位。  
1939 年英國劍橋大學四個學生 Brooks, Smith, Stone, Tutteru.就曾經沈迷於此問 
       題，花了一段很長的時間，最後在理論的指導下，找出了由 28 個小正方     
       形組成的完全正方形，邊長為 1015 單位。 
1948 年 Wilvocks 造出一個由 24 個小正方形組成的完全正方形，邊長為 175 單



位。至目前為止已經出爐 2000 多個 24 階完全正方形。   
1967 年 Wilvocks 造出一個由 25 個及 26 個小正方形組成的完全正方形。 
1976 年荷蘭的數學家 Duijvestijn 更在電子計算機的幫助下，又發現一個由 21 個 

小正方形組成的完全正方形，邊長為 112 單位。並且證明，它是由最少數

目的小正方形組成的完全正方形。 
 
    完美正方形的研究並未到此結束，一方面，上面這一些結果的發現或證明都

要藉助於電腦，導出這些結果的初等證明是非常有意義的。另一方面，人們還沒

有發現究竟哪些正方形是完全正方形？或者說沒有給出一個判斷一個正方形是

完全正方形的標準，比如說完全正方形的最小整數邊長是多少？對於哪些正整數

r 存在 r 階完全正方形？是否存在 22 階完全正方形？這些都有待人們繼續研究。 
 
問題：哪些矩形可以分割成大小不等的正方形？ 

 
    最早出土的矩形是：32×33 矩形可分割成成邊長依次為 1,4,7,8,9,10,14,15,18
等九個正方形。Stone 想去證明不可能把給定正方形分割成不等的正方形，雖然

並未成功，但卻發現另一個可用相異正方形分割的矩形，其邊長分別為 176 和

177。 
    尋求可以用正方形分割的矩形的一個辦法，是先作一個分割成正方形的草

圖，然後標出每個正方形的邊長，寫出這些正方形邊長滿足的關係式得這些正方

形合成一個矩形，最後再解這個方程組。製作草圖有些基本原則： 
（1）最小正方形不能與原正方形的邊相鄰。 
（2）最小正方形與原矩形相鄰的正方形中至少有一邊是平齊的。 
 
底下我們舉一些例子來說明這個方法； 
 
例一：如圖，給定三個正方形，其邊長分別為 x,y,z，很容易依照下列順序標出

其餘正方形的邊長為 
     x+y，2x+y，y-z，y-2z，y-3z，2y-5z。 
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y-z

 
接著考慮水平邊長得知           
      2x+y+x+y=2y-5z+y-2z+y-z 
即 
       3x-2y+8z=0 
考慮垂直邊長得知 
       2y-5z+2x+y=y-z+y+x+y 
即  
       x-4z=0 
因此    x=4z 且 y=10z 
 令 z=1 我們可得 33×32 可分割成相異正方形的矩形。 



例二：：如圖，給定兩個正方形，其邊長分別為 x,y，很容易依照下列順序標出

其餘正方形的邊長， 

xy

x+y
2x+y

3x+y

x+2y

x+3y

3x-3y

2x+5y

9x-5y
6x-2y

 
接著考慮水平邊長得知 
       9x-5y+6x-2y=2x+5y+x+y+2x+y， 
即       9x-16y=0 
取 x=16，y=9，可得可以 Stone 分割的 176×177 的矩形。 
 
深究問題： 
    由分割草圖給出的方程組是否一定有解？ 
 
問題： 
    用有限個大小不相等的立方塊能填滿一個長方體的盒子嗎？ 
 
    對於這個盒子的任何一個成功的填充，位於底部的立方塊提供了一個底部矩

形的一個正方形分割，在這些挨著底部的第一層立方塊中，最小的立方塊不可能

放在靠邊處，否則將有一個更小的方塊挨著底部。因此最小的立方塊必擺在中間

地帶。 
    此時此立方塊的四側被四面牆圍起來，為了蓋住其上表面，必須用一個更小

的方塊；在最小立方塊上側的第二層立方塊中的最小立方塊，再次出現在中間部

位，且四周被較大的立方塊圍起來，於是一個更小的方塊出現在第三層。 
    這種推論將無休止的繼續下去，因此可知用有限個大小不相等的立方塊不能

填滿一個長方體的盒子。 
深究問題： 
    能否將一個等邊三角形分割成大小不相等的等邊三角形？ 



 


