
小題大作：解題方法的連結 
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    民國 72大學聯考數學科有一道試題: 

設0 ＜θ ＜
2
π
，試求

θcos
3

+
θsin

2
 的最小值。 

第 24屆高中科展優勝作品 
cos sin

p q
θ θ
+  的最小值之求法與推廣。作者提出不以

三角函數微分求極值的完美解法，並推廣到一般結論。該文的主要內容: 

1. 將
θcos

p
+

θsin
q

化為座標平面的線段長，求最小長度。因此導出
θcos

p
+

θsin
q

的

最小值。 

2. 由平面推廣到空間，設 x0，y0，z0 ∈R+，有一平面通過點(x0，y0，z0)且與 x， 

y，z 軸在第一卦限的三個交點和原點決定一個長方體，求對角線的最小值。

利用這個結果將.
αcos

0x
+ 

βcos
0y

+
γcos

0z
 ，(x0，y0，z0 ∈R+，0 ＜ γβα ,, ＜ 

2
π

且 12 =Σα )線段化，可求其最小值。 

3. 將空間的結果再一般化，求
i

ix
αcos

Σ  ( xi∈R+，0＜ iα ＜
2
π
， 12 =Σ iα ，i=1…n)

最小值。 

 

底下將這些結果進一步推廣，並與一些不等式做些連結。 

連結 1：歌西不等式 
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將這些不等式相加，即得。 

 



例﹕設 a,b為實數 θ 為銳角，試求 
a b

sin cosθ θ
+  的最小值 。 
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歌西不等式的推廣形式： 

設 aij ,i=1,2,3…,m;j=1,2,3,…,n 為正實數﹐則 
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於是僅需證明  
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將以上式子相加即得 
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故得證 

例﹕設 a,b為實數 θ 為銳角，試求 
a b

sin cosθ θ
+  的最小值 
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連結 2：算幾不等式 

算幾不等式： 

    設 a1, a2,..., an 為 n個正數，則稱 
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n
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分別為此 n個正數的算術，幾何，和調和平均數。A,G之間有如下的關係式：  

     A≥G 
利用數學歸納法證明 

當 n=2時 A2≧G2，假設 n=k時 An≧Gn 

則 
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例：設0 ＜θ ＜
2
π
，試求

θcos
3

+
θsin

2
 的最小值。 

證明： 
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故  3 33 2 4 9
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連結 3：平方平均不等式  
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證明 2 
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係數的推廣 



對 ai>0,ki>0,i=1,2,…,n，及 Nnm ∈, 證明若 11...11

21

=+++
nkkk

 

則     
n

nm

n

m
n

mm

k
a

k
a

k
a

k
a

k
a

k
a

+++≥+++ ......
2

2

1

1

2

2

1

1  

證明：  只需證明 1
...1

2

2

1

1

≤
+++

∑
=

n

i
m

n

m
n

mm

m
i

m
i

k
a

k
a

k
a

k
a

 即可 

左式

1)]1(1[1

)1

...
(1)1

...
(1

1...11

......

1 1

2

2

1

11

2

2

1

1

2

2

1

11

2

2

1

1

=−+=

−
+

+++
=

−
+

+++
≤

⋅⋅⋅⋅
+++

=
+++

∑ ∑∑

∑

= ==

=

m
m

k
m

k
a

k
a

k
a

k
a

mk
m

k
a

k
a

k
a

k
a

m

kkk
k
a

k
a

k
a

k
a

k
a

k
a

k
a

k
a

n

i

n

i i

n

m
n

mm
i

m
i

n

i i

n

m
n

mm
i

m
i

m
iii

n

m
n

mm
i

m
i

n

i
m

n

m
n

mm

m
i

m
i

 

  

例 4：對 a>0,b>0,
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例：對 a>0,b>0,
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最後我們提出兩個可以小題大作延伸的題目，供有興趣的同學加以發揮： 

1. 大學聯考題目：設方程式 x4+x3+bx2+cx+10=0有相異四個有理根，試求其最       

              大根 

2. 台北市 89學年度國中盃數學能力競賽試題： 

設 n是正整數，且 26 65 171n n− + 是連續兩個證整數的乘積，則 n之值為何？ 
 


