藝數家玩摺紙~基礎篇三部曲

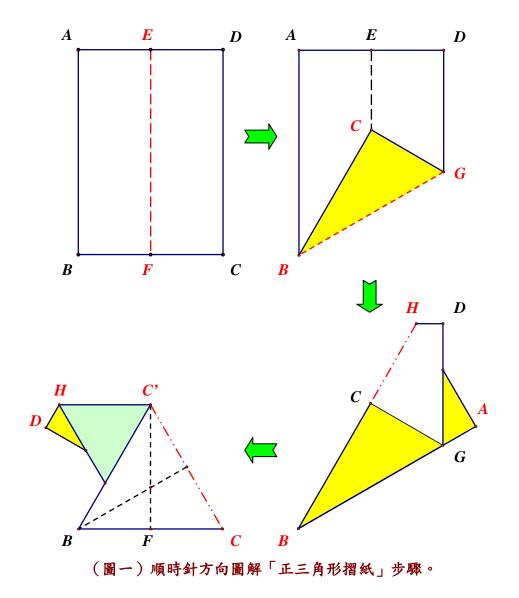
正三角形摺紙

台北市麗山高中 彭良禎

繼正方形摺紙之後,本文介紹從長方形紙張摺出正三角形,及其後續推廣至正 6 邊形、正 12 邊形、...、正 3×2" 邊形的摺法與原理。

一、從長方形摺正三角形

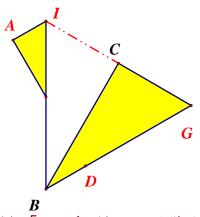
已知:一張長方形紙張,例如:A4紙張。


求摺:以寬爲邊,摺出一個正三角形。

褶法:1. 將長邊 \overline{AB} 與 \overline{DC} 重合,摺出長方形 \overline{ABCD} 的對稱軸 \overline{EF} (圖一左上)。

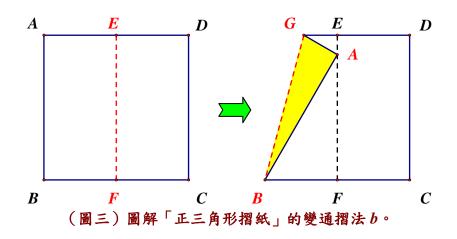
2. 調整 C 點位置,使之落在 \overline{EF} 上,藉以摺出谷線 BG (圖一右上)。

3. 接著再摺出山線 BC (圖一右下)。


4. 打開 $\triangle BCG$,再摺出山線 CC',則 $\triangle BCC'$ 即爲所求(圖一右下)。

- 說明:1. 此法的數學原理有二,一是「正三角形可視為底邊與腰長相等的等腰三角形」,二是「等腰三角形底邊的垂直平分線必過頂角」。因此,**摺法1** 摺出的對稱軸 \overline{EF} ,其實就是摺出底邊 \overline{BC} 的垂直平分線。**摺法2** 將 C 點落在中垂線 \overline{EF} 上,即是爲了取得腰長與底邊相等的等腰三角形。**摺法3** 先摺出一腰,此時 \overline{AB} 也會與 \overline{BG} 重疊,可用以校正誤差。**摺法4** 摺出另一腰。
 - 2. 若將角度的度量納入思考,則正三角形的摺紙操作也可改爲 60° 角或 30° 角的摺紙操作。在**摺法** 4中,打開△BCG即可得 $\angle C'BC$ = 60° ,而從**摺法** 1 到**摺法** 3 摺出山線 BC 的一連串動作,則可視爲「三等分 90° 角(= 30° 角)」的操作。

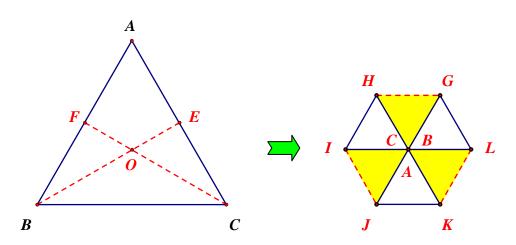
建議: 雖說兩點決定一直線,但要摺出**摺法 4** 的山線 *CC* 容易造成誤差,故建議採左右對稱的方式,重複**摺法 2** 與**摺法 3** 的步驟,以獲得另一腰。


變通摺法 a:若不限定正三角形的邊長大小,則可延續說明 2 的角度思維,由於摺法 2 所得的 $\triangle BCG$ 內角分別是 30° 、 60° 、 90° ,故可在摺法 3 時,改摺出山線 CG(同時藉 \overline{GD} 與 \overline{BG} 重疊來校正誤差),則 $\triangle BGI$ 亦爲所求(圖二)。

(圖二)圖解「正三角形摺紙」的變通摺法 a。

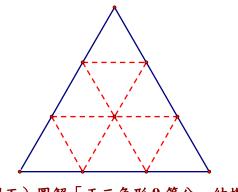
- **變通摺法** *b*:原則上,從正方形摺正三角形的操作仿上述長方形的摺法即得,但亦 見某些摺紙手法,特別融合角度與正方形等邊的思維,先摺出 15°角。
 - 1. 摺出正方形 ABCD 底邊 \overline{BC} 的中垂線 \overline{EF} (圖三左)。
 - 2. 調整 A 點位置,使之落在 \overline{EF} 上,藉以摺出谷線 \overline{AG} (圖三右)。

說明:此時 $\angle GBA = 15^{\circ}$ 、 $\angle ABC = 60^{\circ}$,餘仿上述長方形的摺紙步驟即得。


二、從正三角形摺正六邊形

已知:一張正三角形紙張。

求摺:一個正六邊形。


熠法:1. 先摺出正 $\triangle ABC$ 的兩條對稱軸 \overline{BE} 與 \overline{CF} ,得交點 O (圖四左)。

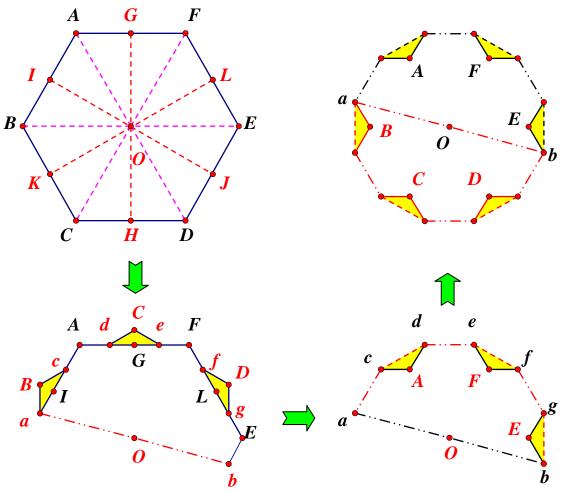
2. 分別將頂點 $A \times B \times C$ 摺與 O 點重合,摺出 $\overline{GH} \times \overline{IJ} \times \overline{KL}$,即可得一個正六邊形(圖四右)。

(圖四)圖解「正六邊形摺紙」步驟。

說明:1. 正三角形的重心、內心、外心與垂心 4 心合一,故所摺的對稱軸也是其中線、角平分線、中垂線與高。由於「一個正六邊形可等分成 6 個正三角形」,故此摺法巧妙地套用「一個大的正三角形等分成 9 個小的正三角形」的幾何結構,所得正六邊形的頂點 $G \times H \times I \times J \times K \times L$ 即是原來正三角形各邊的三等分點位置。

(圖五)圖解「正三角形9等分」結構。

三、從正六邊形摺正十二邊形


已知:一張正六邊形紙張。

求摺:一個正十二邊形。

摺法:1. 先摺出正六邊形 ABCDEF 的 6 條對稱軸(圖五左上)。

2. 以山線方式摺出 $\angle BOI$ 的角平分線 \overline{ab} (圖五左下)。

3. 分別依原正六邊形的邊緣摺山線 \overline{ac} 、 \overline{de} 與 \overline{fg} ;谷線 \overline{cd} 、 \overline{ef} 與 \overline{gb} (圖五右下),打開摺線 \overline{ab} ,即得一正十二邊形 (圖五右上)。

(圖五)逆時針方向圖解「正十二邊形摺紙」步驟。

- 說明:正十二邊形有 12 條對稱軸,其中 6 條是對角線,另外 6 條是平行邊中點的連線。**摺法 1** 是先摺出後者;**摺法 2** 則是透過 $\angle BOI$ 的角平分線來取得前者,雖只摺出其一,但此時點 $c \cdot d \cdot e \cdot f \cdot g$ 即是其他對稱軸的端點位置,故最後再以**摺法 3** 來摺出正十二邊形的所有頂點。
- **建議**:在**摺法** 2 摺出 $\angle BOI$ 的角平分線 \overline{ab} 時,不僅 \overline{OB} 會摺疊到 \overline{OI} 上, \overline{OK} 、 \overline{OC} 、 \overline{OH} 、 \overline{OD} 、 \overline{OJ} 也會分別摺疊到 \overline{OA} 、 \overline{OG} 、 \overline{OF} 、 \overline{OL} 、 \overline{OE} 上,故可藉此修正誤差。
- 推廣:理論上,從正 3×2^n 邊形摺出正 $3\times2^{n+1}$ 邊形的方法仿此即得,但在實際操作上, 會因爲正 3×2^n 邊形越來越趨近於圓,而面臨精準度的挑戰。

【相關閱讀】《發現月刊》第151期〈藝數家玩摺紙~基礎篇首部曲:數學摺紙〉、 第152期〈藝數家玩摺紙~基礎篇二部曲:正方形摺紙〉。